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SUMMARY

A set of non-singular vectorial elements is used to obtain a
new form of the variation of constants, which can be used in nu-
merical integration of the perturbations of minor planets and
satellites, even for orbits of very small eccentriéity—without
introducing the eccentricity as a ""small divisor.” The equations
for treating the radiation pressure effect on néarly circular
orbits of artificial satellites (of the Echo I type) are also derived.
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List of Symbols

M The mean anomaly of the satellite

w The argument of perigee of the satellite

a The longitude of the ascending node of the satellite

” = wt 8

i The inclination of the satellite orbit with respect to the equator

e The eccentricity of the orbit of the satellite

a The semi-major axis of the orbit of the satellite

P = a(l-e?)

n The mean motion of the satellite

f The true anomaly of the satellite

E The eccentric anomaly of the satellite

T The position vector of the satellite

F The disturbing force

i, j,k The unit vectors of the moving system of coordinates

e e,e; The unit vectors of the inertial system

P The unit vector directed from the central body toward the perigee
Q The unit vector standing normally to P and k; Q = kxP

9] The disturbing function

X The position of the perigee in the orbital ideal system of coordinates
W The difference between the osculating and the "mean' positions of perigee
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COMPUTATION OF THE PERTURBATIONS OF
NEARLY CIRCULAR ORBITS, USING A
NON-SINGULAR SET OF VECTORIAL ELEMENTS

by
Peter Musen

Goddavd Space Flight Cenler

INTRODUCTION

In this paper a set of non-singular vectorial elements will be introduced which per-
mits computation of the perturbations of orbits, even those with very small eccentrici-
ties, by means of numerical integration. The classical method of treating the variation
of elliptic elements, as well as some methods developed more recently (References 1, 2,
and 3), suffers from the inclusion of the eccentricity in the denominator; this makes
computations difficult for the case of nearly circular orbits.

The launching of satellites into orbits with small eccentricities has brought this
problem to attention again. The solving of this question requires the development of new
forms of the variation of arbitrary constants, applicable to cases of both moderate and
small eccentricities, Furthermore, these equations for the variation of constants must
possess a symmetry in order to facilitate programming and make the use of machines

more efficient,

In a previous work (Reference 2) the author made the following statement about the
eccentricity:

"It is impossible to remove this factor from the denominator of ... (the equation for dAM/dt) ...
or some corresponding equation, which controls the angular position of the planet in its orbit
unless we resort to series expansions such as those used by Delounay.”
The author now revokes this statement, and the present discussion will show that this
small divisor in the computation of special perturbations is in fact removable.

Recently S. Herrick (Reference 4) suggested a method that is valid for small eccen-
tricities. The new method which will be set forth here makes use of Gibbs' rotation vec-
tor (Reference 5) and the vector of the Hamiltonian integral.
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The difficulty connected with orbits of small eccentricity comes from two sources,
The first source is a tendency always to deduce a unit vector directed toward the oscu-
lating perigee. The determination of this unit vector, unfortunately, is always connected
with a division by the eccentricity. This difficulty can be avoided by representing the
position vector of the body in terms of the Gibbs' and Hamiltonian vectors. The second
source of difficulty is in the use of the disturbed mean anomaly. This difficulty can be
removed by combining the perturbations in the perigee position with the eccentric anom-
aly, and not with the mean disturbed anomaly, and rewriting Kepler's equation in terms
of the disturbed mean longitude.

The difficulty in computing the radiation pressure effect for a circular orbit initiated
the development of this method. However, this method is general and can also be used to
compute the perturbations of planets or satellites caused by gravitational forces.

PERTURBATIONS OF MINOR PLANETS

Let k be the unit vector normal to the osculating orbit plane, P the unit vector
directed from the central body to the osculating perihelion, and Q = kxP. The values of
these vectors for the initial instant will be designated by i, j,, k,. The equation of the
motion of a minor planet is

—_— = __3+F' (1)

where r is the position vector of the satellite, t is time, and F is the disturbing force,
The osculating orbit plane can be considered a rigid body with its instantaneous axis of
rotation coinciding withthe radius vector. Imagine a system of coordinates rigidly con-
nected with the osculating orbital plane and rotating with it. Hansen (Reference 6) labeled
such a system "ideal." It has the property that the equation of motion of the planet, rela-
tive to this system, retains the form of Equation 1. We arbitrarily choose two axes of this
system to be in the orbit plane and the third axis to be normal to it. Let x be the longi-
tude of the osculating perihelion with respect to the ideal system of coordinates,

The initial position of the perigee, originally defined by the vector i, , in the inertial
system, can be imagined to participate in the rotation of the orbit plane. At time t, the
vector i is the unit vector to the initial position of perigee, Its position is invariable
with respect to the ideal system, according to the definition of i, andwill be designated »,.

Let j = kxi. The system (i, j, k) is deduced by a plain rotation of the system
(ig, ig- ko) without sliding. Vector P, however, in addition to rotating, slides in the
orbit plane,



The position vector of the planet is

r - Pa(cosE-e) + Qa1 - e? sinkE, (2)

where a is the semi-major axis, e is the eccentricity, £ is the eccentric anomaly of the
satellite, and

P = + i cos(x =~ 7y) + J sin(X =~ 7,), (3)

- 1 sin(x = 7y) + j cos(Xx - 7,). (4)

Q

Introducing the Hamiltonian vector

¢ - 2o
= - §v + ju (5)
where
1 1 _ h _ h .
h = ﬁ, h, = \/5;, u = ?0 e cos(X -~ m,), and v = E e sin(X - 7,), (6)
and putting
A= E+ (X~ m), (7
p = a(i cos A+ j sin A), (8)
we deduce (from Egquations 2-8):
h,’ . ( h )
= g .2 __88P 9 (9)
r = p + la kxXg.
b? 14+ 1 - e? h

Equation 9 shows that no computation of the unit vector P is necessary since the
perturbations in the perigee position are combined with the eccentric anomaly, and the
position vector of the body is expressible in terms of the Hamiltonian vector directly.
Consequently no division by e takes place.

For a minor planet we make use of Gibbs' rotation vector to represent the rotation
of the orbit plane from its initial position (i,, j,, k,) to its position (i, j, k) attime
t. The use of this vector instead of the elements & and i removes the difficulty
connected with a small inclination. In addition, the matrix of rotation is obtained in
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a more direct way, without resorting to trigonometric transformations.

To some

degree this idea is an extension of the idea used by B. Strémgren (Reference 1) in
his method for special perturbations. Stromgren used the integrated value of the angular
velocity of rotation of the orbit plane as a substitute for Gibbs' vector. However, this
approximation does not accurately represent the rotation of the orbit plane from its ini-
tial position, and as a result only the perturbations of the first order can be easily ob-
tained with Strémgren's method. Let 4, ¢, and ¢ be, respectively, the inclination of the
osculating orbit, the longitude of the ascending node, and the argument of perigee with
respect to the reference system (i,, j, ko).

Set

The ratios

&

€2

€5

€4

5,

sin

sin

COS

cos

CcOos

[0

s?+ s, +532.

- s
%cos¢2¢'= ! ,
1 +s?

- s
g-sin¢—2-—‘é= 2 ,
1+s?

s
0 ymbg o
1+ s?
%cos(ﬁ;"b: 1 s
V1 + s?

(10)

(11)

(12)

(13)



are Euler's parameters of rotation, In terms of s the matrix of rotation ', represent-
ing the rotation of (i,. j,. k,) to position (i, j, k), can be written in the form (Ref-
erence 5)

ro= s [sXI + sx(sxI)] = iiy+ jj, + kko, (14)
+ s
or in the form
- 2
I 1-5s I+ 2sX] + 2ss (15)
1+ s? 1+ s?

where I is the idemfactor. Equation 14 or 15 should be used instead of the develop-
ment of T" into an infinite series (Reference 7). Let S, and S, be two Gibbs' vectors.
If the rotation defined by S, geometrically follows the rotation defined by §,, then the
Gibbs' vector of the combined rotation is given by the formula

S, +8,+85,x8
_ 1 2 27 16
S, e (16)

Let @ be the instantaneous angular velocity of rotation of the osculating orbit plane
and «,, w,, and 0 its projections in the directions i, j, and k, respectively. We have

Q = 1wy + jo,

h
= K (hy F-k)r.

amn
Put
w = dgw 4+ Jow,
= r" 1, Q. (18)
Replacing s by -s in Equation 14 we have:
F o= dgi+ goi+ kok = 1 - == [aXI - sX(sxD)], (19)
w = @- —2 [sxa - sx(sx@)] . (20)

1+ s?



Ty [sxw + sX ( 8Xw)]

I
K
€

(21)

Let s and s+ds be the Gibbs' vectors defining the rotation of the osculating orbit
plane from the moment t, to the moments t and t+dt, respectively. The infinitesimal
matrix of rotation which brings the osculating plane from its position at time ¢t to its
position at time t+dt is I + «XIdt. Since for an infinitesimal rotation, higher order
terms can be neglected, then I" = I + 2sxI, and from this we deduce that the correspond-
ing Gibbs' vector is (1/2)w dt. Substituting S, = (1/2)w dt, S, = s, and §; = s + ds into
Equation 16, we deduce that

% = %w+%sxa+ -;—ss-u
or
g—: = %(I+sxl+ss).w. (22)

s2(TC+ I) = I + sXI + ss, and from Equations 21,

+

We find from Equation14, (1/2)(1
22, and the preceding equation,

g—:; = 147 +452 (Q + w). (23)
Multiplying Equation 22 by
2
I - sXI
1+ s? ¢ #xD)
and considering
I-A = A

AXI-B = AXB,

(sXI):(sXI) = s8 - s’1,
we deduce
© 2 (I sXI) 3—:— s



or

_ 2 ds ds
w = W(H + aTXS),

This vectorial formula is identical with the classic scalar formulas:

wo o, 4545 dé, dé,
27 ~ tSage Y S T f%ra TSI
w de ds de d¢
y 1 ” 52 3 4
2R CO PR T i T i
w, az, dg, dg, dg,
R T N T LT SFT:
From the formula
. h .
Q = hg (hoF-koyr

and Equation 20 we obtain:

) .
© = Ei (hoF-k)(I ' r)

h 2sXr ~ 28X(sXr)
— (h,F-k r -
Iy 0 ) |: 1+ s? j|

h . r(l- s? - 2sxr + 2ss-r
(ho)(hoF 1 1+ s2 ’

Substituting Equations 17 and 24 into Equation 23 we have, as a final result,

ds 1 h

T = 7E (hoF-k)(r + rxs + s8-r).
For Stromgren's method
ds _ 1 h .
ﬁ = 5 h—o (hOF l()r,

which evidently represents only a first approximation. The fact that two terms of

(29)

(25)
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Equation 25 are missing from the equation for Stromgren's method makes the computa-
tion of accurate perturbations by Stromgren's method impossible.

The equation for the variation of g has been deduced previously (Reference 2). In
the present case it takes the form:

de (“;)E_ﬂ_ﬁkk.p_ (26)

The computation of s and g by means of numerical integration is performed in the iner-
tial system directly. By setting

pg = 1o cOS A + jo sin A,
we have for p*, the unit vector in the direction of p in the i, j, k system,
p* = pg t 2 [sxpo + sx(sxpg )]
0 1+ s? 0 ol

and for i, j, k,

7 [sXU0 + sX(sXUO)] .

where U= i,j,k and Uy = iy, j,. ko. Finally, in the inertial system,

hy?/ gegoe' h
r = a’° - a e a—l—(l kxg. (27)
h? 1+1 - e? !

In addition we have u = +g-j, v = -g.i, and also the classical result:

§
4 (%) = hy F-kXr (28)

}2 3'I’
e () 29

where n is the mean motion of the satellite.

and



If preferred, an equation for n can be formed and integrated directly. The classical

formula:

daL, 2 )drf . . 1.4d0
ac :-Er-F+(1-\/1—e2E+2\/1-—8251n RPTIR
for the perturbations in the mean longitude takes the form:
JdAL — >\ d
L -—2r-F+(1—\,1—e2)‘X (30)
dt I dt

Y

in the ideal system of coordinates. From Equations 6-9 it follows that

dv _du
axy _ "dar TV dt (31)
dt u? + y2
From
dg _ _ .dv , .du
dt LT +']dt+QXg

there follows, taking Equation 31 into account,

dx _ 1 dg .
Te = 5 ke
g
and finally, from Equation 30,
dAL hy? 9
. -—21'-F+——l——i k-gxg%-. (32)

dt va 1+ J1 - e? h?

Kepler's equation takes the form:

h
A= T2 (usink - veosA) = My + ng(t - tg) *ffj% dt? + AL, (33)

or the form:

h
0. . - dn
A= oqoEeRt = My +ong(t - t0)+”d—t dt? + AL,

As we see, the use of vectors s and g instead of the elliptical elements or instead of the
elements P and k permits the computation of perturbations even for nearly circular or-

bits with no small numerical divisor,
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The differential equations for s and g admit an integral

g.k:O

which can be used to check the computation,

PERTURBATIONS OF SATELLITES

In the case of either an artificial satellite or a natural planetary satellite, a method
of numerical integration of perturbations will take a most convenient form if it is based
on the mutual separation of secular, long period, and short period effects. A rotating
system of coordinates must be chosen as the basic reference frame in such a way that its
motion contains the secular and long period motions of the node and of the perigee, at
least to a reasonably good approximation. Such a choice is necessary to prevent a fast
accumulation of perturbations as well as to avoid the necessity of a rectification of ele-
ments after the perturbations become large.

Numerical integration permits the drag effect to be included from the very start, as
well as the cross action between the oblateness and the drag effect. The case of critical
orbit inclination can also be treated by means of numerical integration, and a convenient
scheme for doing this has been reported by D. Fisher (Reference 8). The inclusion of
tesseral harmonics becomes less complicated in this method than in a general theory.

The mean motions of the node and perigee and the long period effects can be obtained
to a reasonable approximation from existing analytical or semi-analytical theory. The
scheme given here is designed to tie the author's semi-analytical theory to the process
of numerical integration. However, other theories, with small modifications, can serve
the same purpose. In particular, the polynomial representation of secular and long
period effects published by the Smithsonian Astrophysical Observatory can be of great
assistance.

In addition to the rotating system mentioned above, a certain ideal system of coor-
dinates is to be associated with the moving orbit plane. Let us designate by [n, y dt the
perturbations of the position of perigee, which is included from the very start, and let 7,
be the original position of perigee with respect to the ideal system. The ""mean" perigee
is determined by the expression =, + [ nyy dt . The osculating perigee describes oscil-
lations about its mean position. Let i be the unit vector directed toward the mean posi-
tion of perigee, and j = kxi as before, The position vector of the satellite is given by

r = ir cos(f + X - my - [nyy dt) + jr sin(f + X = 7, = [ ngy dt). (34)

The Hamiltonian vector is introduced by the equation
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g = - iv + ju (35)
where, in this case,
= #e cos(X = 7y = fnoy dt}, (36)
0
v = I]T]e sin(x - 7, = Inyy dt). (37)
(1

These values of u and v were introduced by Brown (Reference 9) into Hansen's theory
to deduce the value of the basic function w, With these new definitions of i, j, u, v, and
g, we have formulas of the same type as before:

- -2 BEP ., 0y, (38)
h gy 1-er T
p = ia cosh + ja sin), (39)
where A is now defined by the equation
A= E+x~ 7~ [nyy dt. (40)

Designating the radial component of the disturbing force by S, the normal compo-
nent to the radius vector by T, and the orthogonal component by z, we have (Refer-

ence 9):
du S . T
3r - +h—051n(f+)(-770-fnoydt)+ (1+-§)E; cos(f+x~7y = [nyydt) + ngyv, (41)
d S
%: -h—ocos(f+x—7r°—fnoydt) +(1+1_;)h10 sin(f+)(—'n'o—fn0ydt)-noyu, (42)

where f is the true anomaly of the satellite, For the derivative of g with respect to the
moving axes i, j, k, we have from Equations 41 and 42:

d S . T .
3% = % h_o o+ E; (1 +§>k>(r - nyy kxg, (43)

where r' is the unit vector in the direction of r. In order to obtain the derivative of g
in the inertial system, the effect of rotation of the orbit plane about the instantaneous
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radius vector and the effect of rotation of i and j about k must be added to Equation 43.
The combined effect of these two rotations is (n,yk + hZr)x g and we deduce:

dg _Sr T x «, b
at = 5o ¢t Ry 1+ > kxr* + hOZhong. (44)

Taking
h
rxXg = rﬁgke cos f

into account and eliminating T by means of the equation

Tkxr* = F - Sr* - Zk,

we deduce an equation analogous to Equation 26:
dg _ 1 r\p. LreF_ 2.
g1 (1 . —)F . 25y koF. (45)

Integrating the last equation, we obtain the components of g in the inertial system di-
rectly.

Let o be the distance of the node from the x-axis of the ideal system. Putting (as in
Hansen's theory)

2N:<70+R0—cr-ﬂ-2fnoadt, (46)
XK = o, - 8 - o+ 8+ 2fnyndt, (47)

where @ is the longitude of the ascending node of the satellite, we have

(o) = o, = [{a=nInydt, (48)

Q
n

(o) - (K+N),
(49)
@ = a, - [(a+n)nydt + (K-N).

We obtain from Equation 43:

f+x=-0c= f+x-0,+ [(a-nnydt + N + K.
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In his previous work (Reference 10) the author made use of the parameters
A, = sin % cos N, Ay = cos % sin K,

. i
sin N, Ay = cos 5 cos K.

N[

)\2 = sin

With the present notation, the equations for the A’s take the following form:

d\ 1Th h
1
To =+ neod, + 5[5 2h0(+>\,e - xsm)],
dA
2 1l h
E? = - noa)\l + E h_o Zho(—%.sf - >\4m)],
dr e %0
3 . 1ih
F TR AT 2[}10 Zho(+>\22 + xlm)],
dh, 1|h
So = - nemy + 7[*‘—0 Zho(-x,e + )\zm)],
y,
where
£ = r cos[f + X - (o)], (51)

m = rsinf[f + x =~ (o).

The development of the equations for the \'s is completely analogous to the development
performed by the author in Reference 10 for slightly different definitions of ¢ and m,

Let e,, e,, e, be unit vectors of the inertial frame of reference, Putting

— ) —
+cos a -sina 0
A(a) = | +sina +cosa 0 | = eze;+ (I~ e,e;) cos a + IXe;y sin a
0 0 1
and - -
1 0 0
A(e) = [0 +cosa ~-sina |= ee + (I~ ee) cosat IXe, sin a,
0 +sina +cos a
we have

r cos f
r = A (8)-A(i)-As(x-0) *|r sin f[;
c
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or, taking Equations 46-49 into account, we deduce

rcos(f+ x-my - fnoydt)
r = [elrsin(f + x - 7y = [ngydt) |,
0

where (@) = (my = 0g) + [ng(y + a - m)dt

and
r= A o] Aa@],
) 2
R e [sXI " sx(sxlﬂ
= A (K- N)-A, (i) A, (K+N).
Evidently

[ = ie, + je, + ke,.

In other words the columns of the matrix " are the unit vectors i, j, k.

Introducing the vector

_ ey - eyt elhy o N i sin N i
s = )\‘ -—elc—osxtan2~e2——cosxtan2+estanK
and putting
R = e f+ em,

we deduce from Equations 50:

ds 1h
de - Mo sXey t ngr(e; + ss-ey) + EE; Zhy(I + sxI + ss) R

1t follows from Equation 54 that
—21-(1 + sHA+TI) = I+ 8sxI +ss,

and Equation 58 takes the form:

(52)

(53)

(54)

(55)

(56)

(57)

(58)
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de ~ nja sxe

1 h
3 P ngmleg+ ss.ey) + g(1 +s?) By Zh,(A + I)-R. (59)

We have, from Equations 52 and 53,

r = Aj[+(2)] AR

and consequently,
R = AT-A,[-(a)] r. (60)
Substituting Equation 60 into Equation 59 we deduce, finally, that

ds

d8 - njasxey + ngn(es + 88iey) + HERED) % Zhyr-A,[()] (T + A). (61)

We have from Equations 39 and 53:

cos A
p = al+|sin A}, (62)
0

This value of p must be used in connection with Equation 38, Equations 28 and 29 of the
previous section are to be used for the determination of h,/h and n. It is necessary to
emphasize that in this exposition only vectorial and dyadic notations are used, and there-
fore it is not necessary to distinguish between column vectors and row vectors.

Designating the perturbations of the mean longitude in the orbital plane by AL,, we
can write Kepler's equation in the form

t t
E—esinE=co+n°t+AL1-(x-n°)+JJg—:dt2 (63)
(1} (]
or, more conveniently, in the form
h t t t d
A= To (u sinA - v cosA) = ¢, + J ny(1 - y)dt + AL, + f J. (ﬁdtz, (64)
0 0 o0

where u and v are obtained by means of the equation

[u,v,0] = g, (65)
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Differentiating Equation 35 we have

%f- = —i%‘t—'+jg—‘:+ n,y kxg + hZrxg. (66)

It follows from the last equation that

dg _ du
k-gxag Sug vt nyye?.

Substituting this result into

dx _ _ 1 dv = du
dt ~ MY T S \Ydt T Vdt)
we obtain
dg

1
dt © ?k’gxdt .

From the last equation and Equation 30 we deduce a formula of the same form as Equa-
tion 32:

2
. 1 hg k gxdg
dt A T
va 1+4/1-e2 B?

Setting
daL 1 ho’ d
2 0 g
—:n—n(l+y)-—r-F*———k'gX—y (67)
dt ° va 1+1-e? b7 dt
we have
hO
A= -— (u sink = v cosA) = ¢, + ngt + AL. (68)

h

From the preceding developments we can now give a collection of formulas for the com-
putation of special perturbations of a non-singular set of vectorial elements:

d 1 r 1 pxe-F_ 2r
a%:g-(l’fg)F—H“—-ho—pkk'F, (69)



1 )
3—: = ngasxey + nym(eg+ ss.e3) + z(1+s?) h_: hok-F r-2,
where
o = A[(]+ N,
We have also
d ol _ .
at ( h> = hy F-kxr,
daL 2 B SN
Tl n-ny(t+y)-—rF+ 7 X 8Xg -
‘ va 1+4/1-¢2 b

The matrices of rotation are computed using the formulas

— 2
A=L1T51 2 (exi+ ss),
1+ s? 1+ s2

r = AS[(Q)]-A-AJ[(Q))] .

The remaining elements are computed by means of the equations

a (1= e.?) h
[ulv10] = s'rr a :’_‘01—2_’#7 e = -Foig,v
1 2
- T B
h02

and the position vector is computed by means of the formulas

cos A
p = al-|sin A,
0

h,? , h
r = _0 g Ep +akag’

S ERPI e

h
K—Fo(u sinh -= v cosA) = ¢, + nyt + AL,

17

(70)

(71)

(72)

(73)

(74)

(75)

(76)

(7M)

(78)
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APPLICATION TO THE DETERMINATION OF THE
RADIATION PRESSURE EFFECT

In the case of the radiation pressure there exists a force function, which can be writ-

ten in the form
Q = Ful-r,

where u® is the unit vector directed toward the sun., Put

Then

r = ir cos(f + ¢¥) + jr sin(f + )
and

0 = FrA cos(f + ¢) + FrB sin(f + ¢}.

Equations 41 and 42 can be written in the form (Reference 11)

du |, 1, 0, 1 1« 0

dt = +Esxn(f+¢) 3r+h0r <1+1—e2 a)cos(f+\,b) YRR AL

dv 1 0, 1 A 20 _

It ° —ﬂcos(f+¢)§;+hor (1+1—e2 a>51n(f+n/)) 3F ~ MoYW
where, as before,

u=Bh—Oecos¢, v=E}1(’-esin¢.
Setting
w = u+ iv, W = u- iv, v = B+ iA, v = B - iA,

where i = y=1, and substituting Equation 81 into Equations 82 and 83, we obtain

dw - F F v r, F v . r . I
dtdvh_o+2hol—e2‘a+2hgl"e2 an‘p[Zl(f*\,b):] Mot ¥¥-

(79)

(80)

(81)

(82)

(83)

(84)
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In order to introduce the effect of the earth's shadow we have to find the average
disturbing force withrespect tothe mean anomaly M over the sunlitpart of the orbit. Let
x, correspond to the point where the satellite leaves the shadow and A, correspond to
the point of re-entry. Taking dM = (r/a)dx into account, we deduce from Equations 84

dw _ _F F 7K, + K,
E V}-;)Kl + 2T0 -—m—— ingyw, (85)
where
LS
K. = 1 ? r (86)
1 T oa
)'l
A
1 [2 r\? (87
K, = 5 (;) dn,
7\'1
Ly
1 2 .
K, = Z—WL (%) exp [21(f + ¢)] dh. (88)
1
Set
e = sin ¢, £ = exp iA.

Then from the basic formula (Reference 12)

(%)P exp iqf = (cosh % exp in) (1 - tan % exp iE)p.q (1 - tan %exp -iE)pN‘ (89)

we deduce

h h
LR R ~ 100 ot (90)
A B R
r\? lho2 h, 1 hy lhoz (91)
(;) = E—h;W2§2—-}TW§+(1+5e2)—*}Tw§ +-4j“—2w2§'2,
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2

(2 ewaicrew = Fevi=a) & - Pulie VTmet) g+ § 0w

Substituting Equations 90-92 into Equations 86-88 and taking

d¢
A= —
d i
into account, we deduce
h h *2
oot (_1the i 1P
K=z <‘ IR )l1 ' (93)
- , 2 2
h h h
D T S S TIPY e S Ce2) g4 2 el 10 202
K2_ i +8h2w§ h §+(1+ e)l h f 8h2 g N ] (94)

3 - 4 -
h 51 1h04 §2

s Do
3
h

(95)

The presence of a secular effect caused by the earth's shadow (Reference 13) in Equations
93-95 is evident.

Introducing the i-parameters from the previous section and putting

we can write Equations 50 in the form

g%’: +in0ap+%%lhoar expi{f+¢r+(w)]. (96)
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o= “inonq-%%Z“ol—”expi[f+¢+<“)]’ (97)

where () is the "mean' argument of the perigee,
(w) = (mg = 0g) + fno(a - 71+ y)dt.

Setting

K‘:FJ
A

we deduce for the radiation pressure effect:

d . F h - .

% = + ingap + 5 hg ' aCh, g exp i(w) * K, (98)
dg _ _ _Fh 5 i(w) -

Jt © " Anoma - 5 aChe B expi(e) “ Ky, (99)

and it follows from Equation 89 that

(1+\[1- ez)(Z—\/l- e2>§

=
F

|
5’{»—
™

1
QO bt
N

—t

+

—

1

L4/

N
S
=S

£
iy
~N
+
B[

Aa

2 3
24Y1-e?Po oy 1P w2
2 8 3
1+J1-e2h h 1+\/1—e’xl

The position of the orbit plane at the time t is given as before by the rotation matrix
I = A;[(%)] “A-A;[(«)] , and the columns of this matrix are the components of i, j, and k
in the inertial system. Thus, the effect of the oblateness perturbations will be concen-
trated mainly in A, [(a)] . A,y [(w)] . The matrix A carries predominantly the effect of the
radiation pressure and has the same form as the corresponding matrix introduced in the
author's previous work (Reference 10).

From

) it (100)
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we deduce for the radiation pressure effect, taking Equations 81 and 84 into account,

a4 (h 1 _
5 (—hg> = 7 Fhya(K, + 7K,). (101)

The valuesof A, and A, are obtained from the equation

r-w® = - /r? - p2, (102)

where o, 1s the mean radius of the earth and Equation 38 is substituted for r. The
programming of the formulas given in this section can be done by using the complex
arithmetic method developed by the IBM Corporation (Reference 14).

CONCLUSION

This paper has presented a new form of the variation of constants, which can be used
for numerical integration of the perturbations of planets or satellites even for orbits with
very low eccentricities or inclinations. The "small divisor" in the form of e or sin i,
which appears in the classical and in some modern methods, is not present in this method.

Recently Dr, Paul Herget published a work which gave a method for solving this prob-
lem in a different way. In his method he also used a modified Kepler's equation but he
combined the eccentric anomaly with the argument of perigee (Reference 15). In the pre-
sent work it was found more convenient to combine the eccentric anomaly with the position
of the perigee reckoned from the departure point.

In particular, the effect of the radiation pressure on nearly circular orbits (Echo 1
type) can be treated by using the formulas given in the preceding section of this discus-
sion., In addition, through numerical integration, the effects of oblateness, drag, and
radiation pressure can be combined more easily by this method than by a development
of the perturbations into trigonometric series.

Extensive and important work has been done by many authors in the field of analyti-
cal or semi-analytical theories of artificial satellites. However, many important non-
gravitational effects which can be observed in the motion of satellites do not favor the
development of perturbations into trigonometric series. In order to include all these ef-
fects as well as their cross actions, it would be preferable to resort to a special pertur-
bations method.
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